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Chaos-induced resistivity in the magnetic null region: A nonlinear mechanism
of collisionless dissipation
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Magnetic null points act as scattering centers where particles describe chaotic orbits, and the mixing effect
brings about increase of the kinetic entropy. The resultant “chaos-induced resistivity” may explain anomalous
diffusion of current in magnetic null regiori®hys. Rev. Lett88, 045003(2002], which can be much larger
than the conventional collisionless resistivity in a high temperature plasma. To study the statistical properties
of the system(such as Lyapunov exponents and distribution funcdiossong spatial inhomogeneity of the
system has been studied to specify the responsible “chaos region.”

DOI: 10.1103/PhysReVvE.68.016407 PACS nuni)er52.20.Dq, 05.45-a, 96.60.Rd

I. INTRODUCTION nections leading to changes of magnetic topologies6].
Tearing modes in tokamaks, magnetic substorms or solar
Spatial variations of electromagnetic fields yield nonlin-flares are significantly accelerated by “anomalous resistivi-
earity in charged particle dynamics. Chaotic motion of par-ties.” Wave-particle interactionghrough lower hybrid drift
ticles is an important mechanism of producing resistivity ininstabilities [4] or stochasticity of magnetic field lind$]
an almost collisionless plasnia—3]. A strongly inhomoge- have been studied to account for enhanced resistivities. The
neous magnetic field including null points breaks the consercollisionless resistivity studied here stems from microscopic
vation of adiabatic invariants. The increase of the degree ofarticle dynamics that cannot be studied by a fluid model or
freedom can result in chaotic motion of particles. The mixingth€ Vlasov equation. We consider magnetic null points that
effect of chaos brings about rapid increase of the kineti¢/"magnetize par'ucles_and cause a h|ghly honintegrable mo-
entropy in a collisionless plasma, which, however, is not suf-t'on' The resultant rapid entropy production may be applied

ficient to yield a diffusion-type dissipation. When a test par-to overcome the difficulty of the Petschek model of magnetic
ticle is confined in a bounded domain of the phase space thrgconnect|on$6]. - .
: The standard normalization of Newton’s equation of mo-

second cumulant of the velocity distribution saturates afteEion shows that the particle inertial effeckinetic effec)

the initial mixing phase, and hence the diffusion constant, o s in a length scale of the skin deptec. I). Single-
(the time derivative of the second cumuladiminishes 10 o ricle motion is analyzed in Sec. Ill. We introduce an
zero. However, in an open system where particles can cofspsemble-averaged “local Lyapunov exponent,” and specify
vect into or out a chaotic region of the phase sp@ther  the “chaos region.” The spatial inhomogeneity of the system
through coordinate or momentum axegarticles are heated js essential—the randomization of orbits and the resultant

locally during a certain staying time in the chaos region, andesistivity are strongly localized in the neighborhoods of null
a continuous dissipation process is achieved thefe

In this paper, we study the motion of particles in a
Y-shape magnetic field with perpendicular electric figfd.
1). If particles are far from the magnetic null point, they are
magnetized and describe ordefed B drift orbits. However,
motion of particles becomes chaotic in a certain neighbor-
hood of the null point. By analyzing motion of many par-
ticles(we consider independent particles ignoring collisjons
we observe collisionless heating of particles in the chaos®
region. This is in marked contrast to the motion of magne-
tized particles that cannot gain energy from a stationary elec:
tric field because of the periodicity of motion. Evaluating the
average velocity of particles in the direction parallel to the
electric field, we may estimate the effective collisionless re-
sistivity. —— . .
This theory may be applied to various collisionless mag- / e hY
netic diffusion phenomena, especially to fast magnetic recon-

FIG. 1. A Y-shape magnetic field with=¢,/¢,=2 projected
onto thex-y plane. ¢ andy coordinates are normalized to the
*Electronic address: numata@plasma.q.t.u-tokyo.ac.jp system sizef,.) The chaos regiorthatched regionis defined by
TElectronic address: yoshida@k.u-tokyo.ac.jp using the local Lyapunov exponents in Sec. Il B.
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points. Particle convection connects the chaos region and the x=f.% B=BeB. t=ri

outside regular region, and hence the chaos regim a > o= AT
priori determine@lmust be treated as an open system. In Sec.
IV, we study the statistical distribution of chaotic particles.
The chaos-l_ndl_Jced resistivity is scaled by the Affdach whereB, is an appropriate measure of the magnetic fielg,
number, while it does not depend on plasma temperature. I ihe Alfven velocity corresponding tBy, 7A=¢,/V,, and
high temperature plasmas, such as, solar corona, the presq\ﬂg is the Alfven Mach number 1 .V, gives theE X B-drift
chaos-induced resistivity is much higher than the classical ), ection speed Using the normalized variables, E6f)

v=Vav, E=(MaVABo)E, ©)

collisional resistivity. reads
Il. MODEL EQUATION N do A A oA
— —=MpE+vXB, (6)
We consider a two-dimensional Y-shagpand X-shape €x dt
magnetic field as the degenerate gamsagnetic fieldFig. 1), ) o )
which can be written aén Cartesian coordinates wherex =V /w. is the collisionless skin depth and
(Bo(yF€,)1€, ,Boxl€,,0) (ly|>¢.) . [ yFex0 (ly>0)
B= oly y x 120 X |y| y (1) B= R R (7)
(0,Box/€y,0) (lyl=ty), (0x,0) (ly[=0),

whereB,, {4, and{, are constant numbers. The plane of where ¢=¢,/{,. The left-hand side of Eq(6) gives the
x=0]y|<¢, is called a neutral sheet where the magnetic‘kinetic effect” that enables deviation from thex B-drift
field vanishes. We apply a constant electric field in the direcmotion (principal part of the ideal magnetohydrodynamic

tion perpendicular to the magnetic field: flow), resulting in chaotic orbits. In what follows, we take
£,=\ to emphasize the kinetic eﬁedﬁence,Tﬁ:wc: cy-
E=Eoe,=—V¢, (2)  clotron frequency If we definew,, including the sign of the

_ _ ~ charge (. is positive for ions and negative for electrons
whereE, is a constante,=Vz, and ¢ is the electrostatic Eq. (6) can be applied for both ions and electrons.
potential. The potentials are given by

lll. SINGLE-PARTICLE DYNAMICS

Bo _
20, [(y+€y)2_xz] (ly[>¢y) A. Chaotic orbit
X
ALXy)= B, Figure 2 shows two types of orbits projected ontoxay
Y, x2 (ly|=¢y), plane. In Fig. 2a), we observe that a particle moves irregu-
X

larly near the Y points while it becomes more regular near

the asymptotic line of the magnetic field. Because of the
$(2)=—Epz. (3 mirror effect of the magnetic field, a particle goes back to the
o . o chaos region and is confined there for a certain time. In Fig.

The Hamiltonian of a single particle includes all three COOr5()  a larger electric field M1 ,=0.01) is applied. After a

dinates, so that the orbit is generally nonintegrableaotio o |atively short staying time, the particle escapes from the
[7]. In the neighborhood of the Y points, particles describe y ying ’ P P

X , o fhaos region.
chaotic orbits receiving almost random sequences of accel- . LA
eration and deceleration from the electric field. As we will " F19- 3, we plot the average staying t'fml(ETll/TA) as
show later, the resultant randomization of orbits yields a col2 function of M. We may approximater;~M,~. This
lisionless resistivity. On the other hand, outside this chaogelation does not depend significantly éres far ast <10.
region(to be specified more quantitatively in Sec. Il),Bhe In the limit of £ — o, the magnetic field becomes one dimen-
magnetic field is sufficiently strong to magnetize particlessional and the orbit becomes integrable.
(the magnetic momenu=mv?/2B conserves and the
guiding centers describiéx B drift orbits. The drift motion B. Lyapunov exponents
causes a flow that supplieée_xtractés particles to(f.rom) the The maximum Lyapunov exponent of a given orbit char-
chaos region. This convection plays an essential role to enscterizes the mean divergence rate of nearby orbits. In a
able a continuous production of heat in the chaos region. cnpaotic system, it provides a quantitative measure of the de-

We study colliysionless_ motion of charged particles gov-gree of stochasticity. First, we define a quantity to measure
erned by Newton'’s equation with the given field$ and(2): divergence of two trajectories in a unit time,

v EioxB @ 1 |ax(t+AD)
mdt _q( v ), X(t)=m|nw, (8)

wherem andq are the mass and charge, respectively, and where 6x is a distance of initially neighboring two trajecto-
is the velocity of a particle. We normalize variables as ries (a basis vector in the most divergent direcjiadere we
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FIG. 2. Typical particle orbit in a Y-shape magnetic field with-1. The dotted line shows the asymptotic line of the magnetic field.
Motions are qualitatively the same for both figures, however, the staying times are different for diffefsntn (b), the particle is swept
out before it is randomized sufficiently.

setAt=10 27,,|6x|=102¢,. To detect the principal axis YO=(x(1)). (10)
of the Hessian, we reorthonormalize the basis vector using

the Gram-Schmidt method to find the most rapidly growing
direction [8]. The conventional maximum Lyapunov expo-
nent is defined by taking a long-time averagey¢f) over a
certain orhit[7,9]; i.e., choosing sufficiently smalAt and

The ensemble average) is taken for the particles contained
in a given region defined as follows: Particles are initially

distributed uniformly in the region—1.0<X,y<1.0 and

|5x|’ one may calculate _0.5<l’;x,l’;y,l’}z<0.5 (total number is 5<104) We con-
sider subdomain$)(R) scaled by the distance from the Y
. N points; R= \x?+ (y— ¢)2. To measure the strength of chaos
x=lim——— >, x(t,)At. (99 near the Y points, we evaluate LLE for the ensemble of
N-NAT =0 particles remaining if2(R). In Fig. 4, we plot LLEs[for

different Q(R)] as functions oft. For largerR (R=1), the

However, this definition is not suitable when we consider arLLE decreases a$ increases, simply thaf2(R) contains
open system where the particle staying time is finite. Toregions where particle motion becomes regular. A stationary
quantify the degree of stochasticity for a temporally and spavalue of LLE is observed foR<1. Hence, we may call
tially finite chaotic phase of motion, we take an ensemble)(1) the chaos region where the LLE is about 0.25.
average, instead of the long-time average, to define a tempo- In Fig. 5, we compare the LLEs for differeM ,’s (and
rally and spatially local maximum Lyapunov expon€ntE)  hence, for different staying timgsg=or M ,<0.01, the LLEs

[10]: have a plateau at the same level (l£B.25). WhenM 4
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FIG. 3. Average staying time in the chaos region)(as a Q(R) (M4=0.002). We define the chaos region such that the local
function of M, . Lyapunov exponents have a plate®Ri<{1.0).
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However, the number of particles in the chaos region de-
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FIG. 5. Local Lyapunov exponents for differevit,’s. For larger
M,, the local Lyapunov exponents are strongly damped and hav
no plateau region.

We may consider a system where the total nhumber of par-
gcles is conserved with supplying particles with zero average
velocity; this model is more appropriate to simulate a con-
vecting system with a driving electric field. Using Eq$l)

=0.01, however, the plateau is lost because all particles araend (12), we obtain the average velocity in such a sustained

swept out from the chaos region before they are randomized? 5™

- A o ~
IV. STATISTICAL DISTRIBUTION AND MACROSCOPIC vw(t) :E[l_ exp(— )] (13
RESISTIVITY

The macroscopic velocity may be modeled by a dissipa-
tive evolution equation

Macroscopic quantities, such as temperature and resistiv-
ity, are calculated invoking many particles that obey the _ do. o
same equation of motion with random initial conditions; ini- Pefi— =M aE— Vg5, (14
tial velocities and positions have a uniform distribution in the dt
domain of —0.5<0v,,0,,0,<0.5 and —1.0<x,y<1.0. In - _ o _
Figs. 6a)—6(c), we plot the velocity distributions of the par- Whereuv, is the normalized average velocity in taedirec-
ticles in the chaos regio)(1) with the Gaussian fitting tion, pey is the effective mass normalized by the particle
curves. In the initial phase ¢y ~*=4), particles relax into mass, ancf/eﬁ is an effective collision frequency normalized
almost isotropic Gaussian distributions. Temporal evolutiondy w.. To explain the meaning of the effective mass, let us
of the distributions are shown in Figs(dd—6(f). The total  first assumepg=1. Then, the solution of Eq14) becomes
number of particles decreases because of the loss of particles
from the chaos region. The peak of distributionvgfgradu- ~ MLE o
ally shifts in the direction of the electric field. The velocity V== [1—exp(— vent) ]. (15
distributions have cut off arourjd|~0.8, implying that par- Veff

ticles with|v|=0.8 are lost from the chaos region. Indeed, if . ) .
valuatingre from the time constant of the numerical result

|v|=0.8, the particle passes the chaos region in a unit tim _ : )
and such a high energy particle cannot be scattered by the ee Eq(13)], we obtain the saturation level of the velocity

A. Velocity distribution

points. .
Figure 7 shows the standard deviatigtemperaturesof =~ _ MAE 16
the velocity distributions. We observe that the temperatures sat Vet

increase in thex andy directions. In the direction of the

electric field ¢ direction, particles have an average flow \vhich translates aB/(VABo) = Ver(vsad Va) in the physical
velocity. The distribution is strongly distorted in thg=1  units. Comparing this relation with Ohm’s layj {s the cur-
region, and the standard deviation decreases. rent densityn is the number density is the electric charge

B. Effective resistivity E= Dot | = 7 qU—satr (17)

We may estimate the effective collisionless resistivity .
from the evolution of the average velocity in the direction of W& Obtain
the electric fieldFig. 8). The ensemble average is taken over
the particles in the chaos regiél(1). Particles in the chaos
region are accelerated monotonically; we may write Mo

et o\ 20 e (18)
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FIG. 6. Velocity distributions in the chaos regioM{=0.001{=0). (a)—(c): distributions ofv,,v,,v,, after initial randomization
phase with the Gaussian fitting curvéd)—(f) Temporal evolutions of the distributions of v, ,v,.

We can derive another resistivity directly from the saturationtional and inertia terms in the averag@dacroscopicmodel.

level. By substituting the value d, into Eq. (17), we By adjusting the mass tpey in the inertia term of Eq(14),
obtain the solution of Eq(14) modifies as

Sl
l—exp ——t]|. (20)
Peff

These two resistivities fer; and ) do not agree, be- By plugging Egs. (13) and (20), we obtain ve=6.2

cause Eq.(14) is a phenomenological model—the micro- x10 3 p.s=2.9. The effective resistivity is given bgin
scopic magnetic forcgp X B is absorbed both in the fric- physical unit$

M AE -~ M,E
ﬂem:)\zwc A . (19) 0=

Veft

Usat
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FIG. 9. Evolution of the number of particles in the chaos region.
The number decreases exponentially.

effective mass. The effective collision frequency only is not
sufficient to account for the chaos effect. From the effective
collision frequency, we obtain a collisionless effective resis-
tivity. In the absence of mutual interactions among particles,

we may construct a stationary state by supplying new par-

Chaotic motion of particles in strongly inhomogeneousticles that are just replicas of particles with shifted initial
magnetic fields is a Simp|e and direct route to produce éimes. The VelOCity distributions of partiCIeS broaden and
collisionless resistivity. In magnetic null regions, particlesachieve almost isotropic Gaussian distribution. The average
are unmagnetized and describe extremely complex orbit$taying time of particles in the chaos region, relative to the
which invalidates theoretical models based on wave-particl@ximum LLE, is the key parameter that restricts the maxi-
interactiong4] or stochastic motion of magnetized fluidg. ~ mum electric field(or the Mach numberto yield an appre-

In an inhomogeneous magnetic field, charged particles deciable resistivity—too large electric field sweeps out par-
scribe chaotic orbits. The randomization of the phase of cyticles from the chaos region before they are randomized.
clotron motion enables particles to receive net acceleration The “chaos-induced resistivity” is proportional to the
from the electric field. The phenomenological dissipationsquare of the Alfve velocity (Va=\w;), which is a func-
equation is introduced to evaluate a current parallel to théion of the magnetic field and the plasma density. On the
electric field. In a macroscopic modél4), the chaotic ran- other hand, the classical collisional resistivi§pitzer resis-
domization effecf{v X B term in the particle modef4)] is  tivity [11]) is a function of the electron temperature
described by both the effective collision frequency and the(*T¢ >9). In a high temperature plasma, the chaos-induced

resistivity (7.¢) can be much larger than the classical colli-
0.4 . . . . . . . . . sional resistivity. For example, if we take typical parameters

035 of the solar corona M(=10°m=3 By=102T, T,
X — =10% eV), 74 is about 18 times larger than the collisional
03 umfincal Result — . i LS L
B(fy=0t — resistivity. The chaos-induced resistivity occurs both in ions
N 025 | DHO=o/Bexp(fh) —- and electrons. lons contribute much larger dissipation than
I electrons, because the size of the ion chaos re@icaled by
02 the skin depthis much larger than that of electrons. This
0.15 = chaos-induced resistivity has been applied to explain the fast
———————————————————— (shock-type reconnection process. Introducing a mesoscopic
e e model in the diffusion regiof6,12], we may avoid the un-
0.05 2 physical scale reduction problem that Petschek’s mpta|
0 e encountered. The bound for the Mach number restricting this
0 100 200 300 400 500 600 700 800 900 1000 collisionless resistivity explains the time scale of the fast
7 reconnection.

FIG. 8. Evolution of the average velocity in the direction of the
electric field M,=0.001, ¢=0). The ensemble consists of the
particles remaining in the chaos region. The average velocity in- This work was supported by Toray Science Foundation
creases linearly. The dotted line shows a linear fitting curve. Thénd a Grant-in-Aid for Scientific Research from the Japanese
dot-dashed line shows the average velocity weighted by the numbévlinistry of Education, Science, and Culture, Grant No.
of particles(13). 14802033.
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