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Chaos-induced resistivity in the magnetic null region: A nonlinear mechanism
of collisionless dissipation

Ryusuke Numata* and Zensho Yoshida†

Graduate School of Frontier Sciences, University of Tokyo, Hongo, Tokyo 113-0033, Japan
~Received 10 January 2003; published 14 July 2003!

Magnetic null points act as scattering centers where particles describe chaotic orbits, and the mixing effect
brings about increase of the kinetic entropy. The resultant ‘‘chaos-induced resistivity’’ may explain anomalous
diffusion of current in magnetic null regions@Phys. Rev. Lett.88, 045003~2002!#, which can be much larger
than the conventional collisionless resistivity in a high temperature plasma. To study the statistical properties
of the system~such as Lyapunov exponents and distribution functions!, strong spatial inhomogeneity of the
system has been studied to specify the responsible ‘‘chaos region.’’

DOI: 10.1103/PhysRevE.68.016407 PACS number~s!: 52.20.Dq, 05.45.2a, 96.60.Rd
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I. INTRODUCTION

Spatial variations of electromagnetic fields yield nonl
earity in charged particle dynamics. Chaotic motion of p
ticles is an important mechanism of producing resistivity
an almost collisionless plasma@1–3#. A strongly inhomoge-
neous magnetic field including null points breaks the cons
vation of adiabatic invariants. The increase of the degree
freedom can result in chaotic motion of particles. The mixi
effect of chaos brings about rapid increase of the kine
entropy in a collisionless plasma, which, however, is not s
ficient to yield a diffusion-type dissipation. When a test p
ticle is confined in a bounded domain of the phase space
second cumulant of the velocity distribution saturates a
the initial mixing phase, and hence the diffusion const
~the time derivative of the second cumulant! diminishes to
zero. However, in an open system where particles can c
vect into or out a chaotic region of the phase space~either
through coordinate or momentum axes!, particles are heated
locally during a certain staying time in the chaos region, a
a continuous dissipation process is achieved there@3#.

In this paper, we study the motion of particles in
Y-shape magnetic field with perpendicular electric field~Fig.
1!. If particles are far from the magnetic null point, they a
magnetized and describe orderedE3B drift orbits. However,
motion of particles becomes chaotic in a certain neighb
hood of the null point. By analyzing motion of many pa
ticles~we consider independent particles ignoring collision!,
we observe collisionless heating of particles in the ch
region. This is in marked contrast to the motion of magn
tized particles that cannot gain energy from a stationary e
tric field because of the periodicity of motion. Evaluating t
average velocity of particles in the direction parallel to t
electric field, we may estimate the effective collisionless
sistivity.

This theory may be applied to various collisionless ma
netic diffusion phenomena, especially to fast magnetic rec
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nections leading to changes of magnetic topologies@1–6#.
Tearing modes in tokamaks, magnetic substorms or s
flares are significantly accelerated by ‘‘anomalous resist
ties.’’ Wave-particle interactions~through lower hybrid drift
instabilities! @4# or stochasticity of magnetic field lines@5#
have been studied to account for enhanced resistivities.
collisionless resistivity studied here stems from microsco
particle dynamics that cannot be studied by a fluid mode
the Vlasov equation. We consider magnetic null points t
unmagnetize particles and cause a highly nonintegrable
tion. The resultant rapid entropy production may be appl
to overcome the difficulty of the Petschek model of magne
reconnections@6#.

The standard normalization of Newton’s equation of m
tion shows that the particle inertial effect~kinetic effect!
works in a length scale of the skin depth~Sec. II!. Single-
particle motion is analyzed in Sec. III. We introduce
ensemble-averaged ‘‘local Lyapunov exponent,’’ and spec
the ‘‘chaos region.’’ The spatial inhomogeneity of the syste
is essential—the randomization of orbits and the result
resistivity are strongly localized in the neighborhoods of n

FIG. 1. A Y-shape magnetic field with,[,y /,x52 projected
onto the x-y plane. (x and y coordinates are normalized to th
system size,x.) The chaos region~hatched region! is defined by
using the local Lyapunov exponents in Sec. III B.
©2003 The American Physical Society07-1
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points. Particle convection connects the chaos region and
outside regular region, and hence the chaos region~not a
priori determined! must be treated as an open system. In S
IV, we study the statistical distribution of chaotic particle
The chaos-induced resistivity is scaled by the Alfve´n Mach
number, while it does not depend on plasma temperature
high temperature plasmas, such as, solar corona, the pr
chaos-induced resistivity is much higher than the class
collisional resistivity.

II. MODEL EQUATION

We consider a two-dimensional Y-shape~and X-shape
magnetic field as the degenerate case! magnetic field~Fig. 1!,
which can be written as~in Cartesian coordinates!

B5H „B0~y7,y!/,x ,B0x/,x ,0… ~ uyu.,y!

~0,B0x/,x ,0! ~ uyu<,y!,
~1!

whereB0 , ,x , and ,y are constant numbers. The plane
x50,uyu<,y is called a neutral sheet where the magne
field vanishes. We apply a constant electric field in the dir
tion perpendicular to the magnetic field:

E5E0ez52“f, ~2!

whereE0 is a constant,ez5“z, and f is the electrostatic
potential. The potentials are given by

Az~x,y!5H B0

2,x
@~y7,y!22x2# ~ uyu.,y!

2
B0

2,x
x2 ~ uyu<,y!,

f~z!52E0z. ~3!

The Hamiltonian of a single particle includes all three co
dinates, so that the orbit is generally nonintegrable~chaotic!
@7#. In the neighborhood of the Y points, particles descr
chaotic orbits receiving almost random sequences of ac
eration and deceleration from the electric field. As we w
show later, the resultant randomization of orbits yields a c
lisionless resistivity. On the other hand, outside this ch
region~to be specified more quantitatively in Sec. III B!, the
magnetic field is sufficiently strong to magnetize partic
~the magnetic momentm[mv'

2 /2B conserves!, and the
guiding centers describeE3B drift orbits. The drift motion
causes a flow that supplies~extracts! particles to~from! the
chaos region. This convection plays an essential role to
able a continuous production of heat in the chaos region

We study collisionless motion of charged particles go
erned by Newton’s equation with the given fields~1! and~2!:

m
dv
dt

5q~E1v3B!, ~4!

wherem andq are the mass and charge, respectively, anv
is the velocity of a particle. We normalize variables as
01640
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x5,xx̂, B5B0B̂, t5tAt̂ ,

v5VAv̂, E5~MAVAB0!Ê, ~5!

whereB0 is an appropriate measure of the magnetic field,VA
is the Alfvén velocity corresponding toB0 , tA[,x /VA , and
MA is the Alfvén Mach number (MAVA gives theE3B-drift
convection speed!. Using the normalized variables, Eq.~4!
reads

l

,x

dv̂

d t̂
5MAÊ1v̂3B̂, ~6!

wherel5VA /vc is the collisionless skin depth and

B̂5H ~ ŷ7,,x̂,0! ~ u ŷu., !

~0,x̂,0! ~ u ŷu<, !,
~7!

where ,[,y /,x . The left-hand side of Eq.~6! gives the
‘‘kinetic effect’’ that enables deviation from theE3B-drift
motion ~principal part of the ideal magnetohydrodynam
flow!, resulting in chaotic orbits. In what follows, we tak
,x5l to emphasize the kinetic effect~hence,tA

215vc : cy-
clotron frequency!. If we definevc including the sign of the
charge (vc is positive for ions and negative for electrons!,
Eq. ~6! can be applied for both ions and electrons.

III. SINGLE-PARTICLE DYNAMICS

A. Chaotic orbit

Figure 2 shows two types of orbits projected onto anx-y
plane. In Fig. 2~a!, we observe that a particle moves irreg
larly near the Y points while it becomes more regular ne
the asymptotic line of the magnetic field. Because of
mirror effect of the magnetic field, a particle goes back to
chaos region and is confined there for a certain time. In F
2~b!, a larger electric field (MA50.01) is applied. After a
relatively short staying time, the particle escapes from
chaos region.

In Fig. 3, we plot the average staying time (t̂1[t1 /tA) as
a function of MA . We may approximatet̂1'MA

21 . This
relation does not depend significantly on, as far as,&10.
In the limit of ,→`, the magnetic field becomes one dime
sional and the orbit becomes integrable.

B. Lyapunov exponents

The maximum Lyapunov exponent of a given orbit cha
acterizes the mean divergence rate of nearby orbits. I
chaotic system, it provides a quantitative measure of the
gree of stochasticity. First, we define a quantity to meas
divergence of two trajectories in a unit time,

x~ t ![
1

Dt
ln

udx~ t1Dt !u
udx~ t !u

, ~8!

wheredx is a distance of initially neighboring two trajecto
ries ~a basis vector in the most divergent direction!. Here we
7-2
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FIG. 2. Typical particle orbit in a Y-shape magnetic field with,51. The dotted line shows the asymptotic line of the magnetic fie
Motions are qualitatively the same for both figures, however, the staying times are different for differentMA’s. In ~b!, the particle is swept
out before it is randomized sufficiently.
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setDt51022tA ,udxu51022,x . To detect the principal axis
of the Hessian, we reorthonormalize the basis vector us
the Gram-Schmidt method to find the most rapidly growi
direction @8#. The conventional maximum Lyapunov exp
nent is defined by taking a long-time average ofx(t) over a
certain orbit @7,9#; i.e., choosing sufficiently smallDt and
udxu, one may calculate

x̄[ lim
N→`

1

NDt (
n50

N

x~ tn!Dt. ~9!

However, this definition is not suitable when we consider
open system where the particle staying time is finite.
quantify the degree of stochasticity for a temporally and s
tially finite chaotic phase of motion, we take an ensem
average, instead of the long-time average, to define a tem
rally and spatially local maximum Lyapunov exponent~LLE!
@10#:

FIG. 3. Average staying time in the chaos region (t̂1) as a
function of MA .
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x̃~ t ![^x~ t !&. ~10!

The ensemble average^•& is taken for the particles containe
in a given region defined as follows: Particles are initia
distributed uniformly in the region21.0, x̂,ŷ,1.0 and
20.5, v̂x ,v̂y ,v̂z,0.5 ~total number is 53104). We con-
sider subdomainsV(R) scaled by the distance from the

points;R[Ax̂21( ŷ2,)2. To measure the strength of chao
near the Y points, we evaluate LLE for the ensemble
particles remaining inV(R). In Fig. 4, we plot LLEs@for
different V(R)] as functions oft̂ . For largerR (R*1), the
LLE decreases ast̂ increases, simply thatV(R) contains
regions where particle motion becomes regular. A station
value of LLE is observed forR&1. Hence, we may cal
V(1) the chaos region where the LLE is about 0.25.

In Fig. 5, we compare the LLEs for differentMA’s ~and
hence, for different staying times!. For MA,0.01, the LLEs
have a plateau at the same level (LLE.0.25). WhenMA

FIG. 4. Local Lyapunov exponents for different subdoma
V(R) (MA50.002). We define the chaos region such that the lo
Lyapunov exponents have a plateau (R&1.0).
7-3
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*0.01, however, the plateau is lost because all particles
swept out from the chaos region before they are randomi

IV. STATISTICAL DISTRIBUTION AND MACROSCOPIC
RESISTIVITY

A. Velocity distribution

Macroscopic quantities, such as temperature and resi
ity, are calculated invoking many particles that obey t
same equation of motion with random initial conditions; in
tial velocities and positions have a uniform distribution in t
domain of 20.5, v̂x ,v̂y ,v̂z,0.5 and21.0, x̂,ŷ,1.0. In
Figs. 6~a!–6~c!, we plot the velocity distributions of the pa
ticles in the chaos regionV(1) with the Gaussian fitting
curves. In the initial phase (t̂;x̃21.4), particles relax into
almost isotropic Gaussian distributions. Temporal evolutio
of the distributions are shown in Figs. 6~d!–6~f!. The total
number of particles decreases because of the loss of par
from the chaos region. The peak of distribution ofv̂z gradu-
ally shifts in the direction of the electric field. The veloci
distributions have cut off arounduvu;0.8, implying that par-
ticles with uvu*0.8 are lost from the chaos region. Indeed
uvu*0.8, the particle passes the chaos region in a unit t
and such a high energy particle cannot be scattered by t
points.

Figure 7 shows the standard deviations~temperatures! of
the velocity distributions. We observe that the temperatu
increase in thex and y directions. In the direction of the
electric field (z direction!, particles have an average flo
velocity. The distribution is strongly distorted in thev̂z*1
region, and the standard deviation decreases.

B. Effective resistivity

We may estimate the effective collisionless resistiv
from the evolution of the average velocity in the direction
the electric field~Fig. 8!. The ensemble average is taken ov
the particles in the chaos regionV(1). Particles in the chaos
region are accelerated monotonically; we may write

FIG. 5. Local Lyapunov exponents for differentMA’s. For larger
MA , the local Lyapunov exponents are strongly damped and h
no plateau region.
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v̂̄z~ t̂ !.a t̂

with

a53.4831024. ~11!

However, the number of particles in the chaos region
creases exponentially~Fig. 9!:

n~ t̂ !.n0exp~2b t̂ !

with

b52.1731023. ~12!

We may consider a system where the total number of p
ticles is conserved with supplying particles with zero avera
velocity; this model is more appropriate to simulate a co
vecting system with a driving electric field. Using Eqs.~11!
and ~12!, we obtain the average velocity in such a sustain
system:

v̂̄w~ t̂ !5
a

b
@12exp~2b t̂ !#. ~13!

The macroscopic velocity may be modeled by a dissi
tive evolution equation

r̂eff

dv̂̄z

d t̂
5MAÊ2 n̂effv̂̄z , ~14!

where v̂̄z is the normalized average velocity in thez direc-
tion, r̂eff is the effective mass normalized by the partic
mass, andn̂eff is an effective collision frequency normalize
by vc . To explain the meaning of the effective mass, let
first assumer̂eff51. Then, the solution of Eq.~14! becomes

v̂̄z5
MAÊ

n̂eff

@12exp~2 n̂efft̂ !#. ~15!

Evaluatingn̂eff from the time constant of the numerical resu
@see Eq.~13!#, we obtain the saturation level of the veloci

v̂̄sat5
MAÊ

n̂eff

, ~16!

which translates asE/(VAB0)5 n̂eff( v̄sat/VA) in the physical
units. Comparing this relation with Ohm’s law (j is the cur-
rent density,n is the number density,q is the electric charge!

E5heff j 5heffnqv̄sat, ~17!

we obtain

heff,1

m0
5l2vcn̂eff . ~18!

ve
7-4
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FIG. 6. Velocity distributions in the chaos region (MA50.001,,50). ~a!–~c!: distributions ofvx ,vy ,vz , after initial randomization
phase with the Gaussian fitting curves.~d!–~f! Temporal evolutions of the distributions ofvx ,vy ,vz .
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We can derive another resistivity directly from the saturat

level. By substituting the value ofv̂̄sat into Eq. ~17!, we
obtain

heff,2

m0
5l2vc

MAÊ

v̂̄sat

. ~19!

These two resistivities (heff,1 and heff,2) do not agree, be-
cause Eq.~14! is a phenomenological model—the micr
scopic magnetic forceqv3B is absorbed both in the fric
01640
ntional and inertia terms in the averaged~macroscopic! model.
By adjusting the mass tor̂eff in the inertia term of Eq.~14!,
the solution of Eq.~14! modifies as

v̂̄z5
MAÊ

n̂eff
F12expS 2

n̂eff

r̂eff

t̂ D G . ~20!

By plugging Eqs. ~13! and ~20!, we obtain n̂eff56.2
31023,r̂eff52.9. The effective resistivity is given by~in
physical units!
7-5
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heff

m0
5l2vc

2neff . ~21!

V. SUMMARY

Chaotic motion of particles in strongly inhomogeneo
magnetic fields is a simple and direct route to produc
collisionless resistivity. In magnetic null regions, particl
are unmagnetized and describe extremely complex or
which invalidates theoretical models based on wave-part
interactions@4# or stochastic motion of magnetized fluids@5#.

In an inhomogeneous magnetic field, charged particles
scribe chaotic orbits. The randomization of the phase of
clotron motion enables particles to receive net accelera
from the electric field. The phenomenological dissipati
equation is introduced to evaluate a current parallel to
electric field. In a macroscopic model~14!, the chaotic ran-
domization effect@v3B term in the particle model~4!# is
described by both the effective collision frequency and

FIG. 7. Standard deviations of the velocity distribution (MA

50.001,,50).

FIG. 8. Evolution of the average velocity in the direction of t
electric field (MA50.001, ,50). The ensemble consists of th
particles remaining in the chaos region. The average velocity
creases linearly. The dotted line shows a linear fitting curve.
dot-dashed line shows the average velocity weighted by the num
of particles~13!.
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effective mass. The effective collision frequency only is n
sufficient to account for the chaos effect. From the effect
collision frequency, we obtain a collisionless effective res
tivity. In the absence of mutual interactions among particl
we may construct a stationary state by supplying new p
ticles that are just replicas of particles with shifted initi
times. The velocity distributions of particles broaden a
achieve almost isotropic Gaussian distribution. The aver
staying time of particles in the chaos region, relative to
maximum LLE, is the key parameter that restricts the ma
mum electric field~or the Mach number! to yield an appre-
ciable resistivity—too large electric field sweeps out p
ticles from the chaos region before they are randomized

The ‘‘chaos-induced resistivity’’ is proportional to th
square of the Alfve´n velocity (VA5lvc), which is a func-
tion of the magnetic field and the plasma density. On
other hand, the classical collisional resistivity~Spitzer resis-
tivity @11#! is a function of the electron temperatu
(}Te

23/2). In a high temperature plasma, the chaos-indu
resistivity (heff) can be much larger than the classical co
sional resistivity. For example, if we take typical paramet
of the solar corona (n51016 m23, B051022 T, Te
5102 eV), heff is about 104 times larger than the collisiona
resistivity. The chaos-induced resistivity occurs both in io
and electrons. Ions contribute much larger dissipation t
electrons, because the size of the ion chaos region~scaled by
the skin depth! is much larger than that of electrons. Th
chaos-induced resistivity has been applied to explain the
~shock-type! reconnection process. Introducing a mesosco
model in the diffusion region@6,12#, we may avoid the un-
physical scale reduction problem that Petschek’s model@13#
encountered. The bound for the Mach number restricting
collisionless resistivity explains the time scale of the fa
reconnection.
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FIG. 9. Evolution of the number of particles in the chaos regio
The number decreases exponentially.
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